Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Publications

Updated June 2, 2025

Indicates (*) Graduate student, (**) Post-doc, (***) Research Professional, (¶) Undergraduate student

71. Shiviah, K., Subedi, G.P.**, Barb A.W., Nikolau, B.N (2025) Solution structure and NMR chemical shift perturbations of the Arabidopsis BCCP1 identify inter-subunit interactions potentially involved in the assembly of the heteromeric acetyl-CoA carboxylase. Plant Direct in press

70. Kremer P.G.,* Lampros, E.A., Blocker, A.M., A.W.Barb# (2024) One N-glycan regulates natural killer cell antibody-dependent cell-mediated cytotoxicity and modulates Fc γ receptor IIIa / CD16a structure. eLife. doi:10.7554/eLife.100083.1

69. Roberts, E.T., J. Choi, J. Risher, P.G. Kremer***, A.W. Barb, I.J. Amster (2024) Measuring 15N and 13C enrichment levels in sparsely-labeled proteins using high-resolution and tandem mass spectrometry. J. Am. Soc. Mass Spect. in press

68. Roberts, E.T., A.R. Davis,***, J. Risher, A.W. Barb, I.J. Amster (2024) Automated assignment of 15N and 13C enrichment levels in doubly-labeled proteins. J. Am. Soc. Mass Spect. in press

67. Benavente, M.C.R.**, Z.A. Hakeem,* A.R. Davis,*** N.B. Murray, P. Azadi, E.M. Mace, A.W. Barb# (2024) Distinct CD16a features on human NK cells observed by flow cytometry correlate with increased ADCC. Sci Rep. 14:7938 doi: 10.1038/s41598-024-58541-6

66. Subedi G.P.,** E.T. Roberts, A.R. Davis,*** P.G. Kremer,*  I.J. Amster, A.W. Barb# (2024) A comprehensive assessment of selective amino acid 15N-labeling in human embryonic kidney 293 cells for NMR spectroscopy. J Biomol NMR. 78:125-132 doi: 10.1007/s10858-023-00434-3

65. Davis, A.R.***, E.T. Roberts, I.J. Amster, A.W. Barb# (2024) Uniform [13C,15N] labeled and glycosylated IgG1 Fc expressed in Saccharomyces cerevisiae. J Biomol NMR. 78:9-18 doi: 10.1007/s10858-023-00428-1

64. Aguilar Díaz de León, J.S.**, I. Aguilar, A.W. Barb# (2023) Macrophage N-glycan processing inhibits antibody-dependent cellular phagocytosis. Glycobiology. 170:202-213 doi: 10.1093/glycob/cwad078

63. Benavente, M.C.R.**, H.B. Hughes,  P.G. Kremer,* G.P. Subedi,** A.W. Barb# (2023) Inhibiting N-glycan processing increases the antibody binding affinity and effector function of human natural killer cells. Immunology. 170:202doi: 10.1111/imm.13662

62. Tolbert, W.D., N. Gohain, P.G. Kremer.,* A.P. Hederman, D.N. Nguyen, V. Van, R. Sherburn, G.K. Lewis, A. Finzi, J. Pollara, M.E. Ackerman, A.W. Barb#, M. Pazgier (2022) Decoding human-macaque interspecies differences in Fc-effector functions: the structural basis for CD16-dependent effector function in Rhesus macaque. Front Immunol. 13:960411 doi: 10.3389/fimmu.2022.960411

61. Kremer P.G.,* A.W.Barb# (2022) The weaker-binding Fc γ receptor IIIa F158 allotype retains sensitivity to N-glycan composition and exhibits a destabilized antibody-binding interface. J Biol Chem. 298:102329. doi: 10.1016/j.jbc.2022.102329

60. Shenoy, A.,* A.R. Davis,*** E.T. Roberts, I.J. Amster, A.W.Barb# (2022) Metabolic 15N labeling of the N-glycosylated Immunoglobulin G1 Fc with an engineered Saccharomyces cerevisiae strain. J Biomol NMR. 76:95. doi10.1007/s10858-022-00397-x

59. Lampros, E., P. Kremer,* J. Aguilar Díaz de León,** E.T. Roberts, M.C.R. Benavente,** I.J. Amster, A.W.Barb# (2022) The antibody-binding Fc gamma receptor IIIa / CD16a is N-glycosylated with high occupancy at all five sites. Curr Res Immunol. 3:128-135 doi: 10.1016/j.crimmu.2022.05.005

58. Patel, K.R., Barb A.W., and Stowell, S.R. (2022) Method for identifying galectin ligands on lymphocyte membrane glycoproteins. Methods Mol Biol. 2442:215-232. doi: 10.1007/978-1-0716-2055-7_13

57. Shenoy, A.,* and A.W. Barb# (2021) Recent advances towards engineering glycoproteins using modified yeast display platforms. Methods in Molecular Biology. 2370:185-205. Doi: 10.1007/978-1-0716-1685-7_9

56. Shenoy, A.,* S. Yalamanchili, A.R. Davis*** and A.W. Barb# (2021) Expression and display of glycoengineered antibodies and antibody fragments with an engineered yeast strain. Antibodies. 10:38. doi: 10.3390/antib10040038. 

55. Patel, K.R.,* M.C.R. Benavente,** W.W. Lorenz, E.M. Mace and A.W. Barb# (2021) Fc γ Receptor IIIa / CD16a processing correlates with the expression of glycan-related genes in human natural killer cells. J Biol Chem. 296:100183. doi: 10.1074/jbc.RA120.015516

54. Barb A.W.# (2021) Fc γ receptor compositional heterogeneity: considerations for immunotherapy development. J Biol Chem. 296:100057. Review. doi: 10.1074/jbc.REV120.013168

53. O’Rourke, S.M., G.I. Morozov, J.T. Roberts,* A.W. Barb, and N.G. Sgourakis (2020) Production of soluble pMHC-I molecules in mammalian cells using the molecular chaperone TAPBPR. Protein Engineering, Design, and Selection 32:525-532. Doi: 10.1093/protein/gzaa015

52. Patel, K.R.,* J.T. Roberts,* and A.W. Barb# (2020) Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 30:427-432. doi: 10.1093/glycob/cwaa002

51. Roberts J.T.,* K.R. Patel* and A.W. Barb# (2020) Site-specific N-glycan analysis of antibody-binding Fc g receptors from primary human monocytes. Molecular & Cellular Proteomics 19:362-374. doi: 10.1074/mcp.RA119.001733

50. Yamaguchi, Y., and A.W. Barb# (2020) A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 30:214-225. doi: 10.1093/glycob/cwz068 

49. Patel, K.R.,* J.D. Nott, and A.W. Barb# (2019) Primary human natural killer cells retain proinflammatory IgG1 at the cell surface and express CD16a glycoforms with donor-dependent variability. Molecular & Cellular Proteomics 18:2178-2190. doi: 10.1074/mcp.RA119.001607

48. Tolbert, W.D., G.P. Subedi,** N. Gohain, G.K. Lewis, K.R. Patel,* A.W. Barb and M. Pazgier (2019) From Rhesus macaque to human: structural evolutionary pathways for Immunoglobulin G subclasses. MAbs. 2: 1-16. doi: 10.1080/19420862.2019.1589852

47. Patel, K.R.,* J.T. Roberts,* and A.W. Barb# (2019) Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Frontiers Immunology. 10:223. Doi: 10.3389/fimmu.2019.00223 Review

46. Barb, A.W.,# G.P. Subedi,** and D.J. Falconer* (2019). The preparation and solution NMR spectroscopy of human glycoproteins is accessible and rewarding. Methods in Enzymology 614:239-261. doi: 10.1016/bs.mie.2018.08.021 Review

45. Subedi G.P.,** A.V. Sinitskiy, J.T. Roberts,* K.R. Patel,* V.S. Pande and A.W. Barb# (2019). Intradomain interactions in an NMDA receptor fragment mediate N-glycan processing and conformational sampling. Structure 27:55-65.e3 doi: 10.1016/j.str.2018.09.010

44. Roberts J.T.* and A.W. Barb# (2018). A single Fc g receptor IIIb / CD16b amino acid distorts the structure upon binding immunoglobulin G1 and reduces affinity relative to CD16a. J Biol Chem 293:19899-19908 doi: 10.1074/jbc.RA118.005273

43. Subedi G.P**. and A.W. Barb# (2018). CD16a with oligomannose-type N-glycans is the only “low affinity” Fc g receptor that binds the IgG crystallizable fragment with high affinity in vitro. J Biol Chem 293:16842-16850 doi: 10.1074/jbc.RA118.004998

42. Xie, Y., A.W. Barb, T.A. Hennen-Bierwagen and A.M. Myers (2018). Direct determination of the site of addition of glucosyl units to maltooligosaccharide acceptors catalyzed by maize starch synthase I. Frontiers Plant Science 9:1252 doi: 10.3389/fpls.2018.01252

41. Falconer D.J.,* G.P. Subedi,** A.M. Marcella* and A.W. Barb# (2018). Antibody fucosylation lowers FcgRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chemical Biology 17(8):2179-2189. doi: 10.1021/acschembio.8b00342

40. Yang Q., J.W. Martin, A.W. Barb, F. Thelot, A. Yan, B.R. Donald, and T.G. Oas (2018). Continuous interdomain orientation distributions reveal components of binding thermodynamics. J Mol Biol 430:3412-3426. doi: 10.1016/j.jmb.2018.06.022

39. Marcella, A.M.* and A.W. Barb# (2018). Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Applied Microbiology and Biotechnology 102(15):6333-6341. Review. doi: 10.1007/s00253-018-9114-2

38. Falconer, D.J.* and A.W. Barb# (2018). Mouse IgG2c Fc loop residues promote greater receptor-binding affinity than mouse IgG2b or human IgG1. PLoSOne 13(2): p. e0192123. doi:10.1371/journal.pone.0192123

37. Patel, K.R.,* J.T. Roberts,* G.P. Subedi** and A.W. Barb# (2018). Restricted processing of CD16a / Fc g receptor IIIa N-glycans from primary human NK cells impacts structure and function. J Biol Chem 293(10):3477-3489. Doi: 10.1074/jbc.RA117.001207

àEditors Choice, see Oliva, Cavanaugh & Cobb (2018). J Biol Chem, 293:3490 for a summary of this article’s impact

36. Marcella, A.M.,* S.J. Culbertson, M.A. Shogren-Knaak and A.W. Barb# (2017). Structure, high affinity and negative cooperativity of the Escherichia coli holo-(acyl carrier protein):holo-(acyl carrier protein) synthase complex. J Mol Biol429(23):3763-3775.

35. Marcella, A.M.* and A.W. Barb# (2017). The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Applied Microbiology and Biotechnology 101(23-24):8431-8441.

34. Subedi,G.P.,** D.F. Falconer* and A.W. Barb# (2017) Carbohydrate-polypeptide contacts in the antibody receptor CD16A identified through solution NMR spectroscopy. Biochemistry 56(25):3174-3177.

33. Barb, A.W. #(2017). Quantifying carbohydrate motions through solution measurements: applications to immunoglobulin G Fc. In NMR in Glycoscience and Glycotechnology, K.Kato and T. Peters, ed, Royal Society of Chemistry, p208-227. Review

32. Larson, M.E., D.J. Falconer,* A.M. Myers, and A.W. Barb# (2016). Direct characterization of the maize starch synthase IIa product shows maltodextrin elongation occurs at the non-reducing end. J Biol Chem 291(48):24951-24960.

31. Marcella, A.M.* and A.W. Barb# (2016). A rapid fluorometric assay for the S-malonyltransacylase FabD and other sulfhydryl utilizing enzymes. J Biol Methods 2016;3(4):e53. doi: 10.14440/jbm.2016.144

30. Subedi, G.P.,** and A.W. Barb# (2016). The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc g receptor. MAbs 8:1512-1524.

29. Barb, A.W.# and G.P. Subedi** (2016). An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. J Biomol NMR 64:75-85.

28. Subedi, G.P.,** H.A. Moniz, R.W. Johnson, K.W. Moremen, A.W. Barb# (2015). High yield expression of recombinant human proteins with the transient transfection of HEK293 cells in suspension. J. Vis. Exp.(106), e53568, doi:10.3791/53568.

27. Subedi, G.P.,** and A.W. Barb# (2015). The structural role of antibody N-glycosylation in receptor interactions. Structure, 23:1573-1583.

26. Marcella, A.M.,** J. Fuyuan and A.W. Barb# (2015). Preparation of holo- and malonyl-[acyl-carrier-protein] in a manner suitable for analog development. Protein Expression and Purification, 115:39-45.

25. Hanson, Q.M.* and A.W. Barb# (2015). A perspective on the structure and receptor-binding properties of immunoglobulin G Fc. Biochemistry 54:2931-42. Review

24. Barb, A.W.# (2015) Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [13C,15N]-N-acetylglucosamine labeling of immunoglobulin G1. Biochemistry 54:313-322

23. Subedi, G.P.,** Q.M. Hanson* and A.W. Barb# (2014) Restricted Motion of the Conserved Immunoglobulin G1 N-Glycan Is Essential for Efficient FcγRIIIa Binding. Structure 22:1478-88.

22. Frank, M., R.C. Walker, W.N. Lanzilotta, J.P. Prestegard and A.W. Barb# (2014) Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J Mol Biol 426:1799-1811.

(preceding independence)

21. Barb, A.W.,** S.K. Hekmatyar, J.N. Glushka, and J.H. Prestegard(2013) Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate. J Mag Res, 228:59-65.

20. Barb, A.W.,** X. Wang, and J.H. Prestegard (2013) Refolded Recombinant Siglec5 for NMR Investigation of Complex Carbohydrate Binding. Protein Expr Purif 88(2):183-9.

19. Barb, A.W.,** M. Lu, K. Moremen, and J.H. Prestegard (2012) NMR characterization of Immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry, 51:4618-4626 

18. Barb, A.W.,** T.-H. Ho, and J.H. Prestegard (2012) Lanthanide binding and IgG affinity construct for solution NMR, MRI and luminescence microscopy. Protein Science, 21:1456-1466.

17. Barb, A.W.,** D.I. Freedberg, M.D. Battistel, and J.H. Prestegard (2011) NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J Biomol NMR, 51:163-171.

16. Barb, A.W.,** S.K. Hekmatyar, J.N. Glushka, and J.H. Prestegard (2011) Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine.  J Mag Res, 212:304-310.

15. Barb, A.W.,** and J.H. Prestegard (2011) NMR analysis demonstrates the immunoglobulin G N-glycans are accessible and dynamic.  Nature Chem Biol, 7:147-153.

àsee Meier & Duus (2011) Nature Chem Biol, 7:131 for a summary of this article and its impact

14. Barb, A.W.,** J. Cort, J. Seetharaman, S. Lew, H.-W. Lee, T. Acton, R. Xiao, M.A. Kennedy, L. Tong, G.T. Montelione and J.H. Prestegard (2011) Structures of Domains I and IV from YbbR are representative of a widely distributed protein family.  Protein Science, 20:396-405.

13. Barb, A.W.,** J.N. Glushka and J.H. Prestegard (2011) Kinetics of neuraminidase action on glycoproteins by 1D and 2D NMR.  J Chem Ed, 88:95-97.

12. Lee, C.J., X. Liang, X. Chen, D. Zeng, S.H. Joo, H.S. Chung, A.W. Barb,* S.M. Swanson, R.A. Nicholas, Y. Li, E.J. Toone, C.R.H. Raetz and P. Zhou (2011) Species-Specific and Inhibitor-Dependent Conformations of LpxC–Implications for Antibiotic Design.  Chem & Biol, 18:38-47.

11. Barb, A.W.,** A.J. Borgert, M. Liu, G. Barany and D. Live (2010) Intramolecular glycan-protein interactions in glycoproteins.  Meth Enz 478:365-388.

10. Lee, H.W., G. Wylie, S. Bansal, X. Wang, A.W. Barb, ** M. Macnaughtan, A. Ertekin, G.T. Montelione and J.H. Prestegard (2010) Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping.  Protein Science, 19:1673-1685.

9. Barb, A.W.,* L. Jiang, C.R.H. Raetz and P. Zhou (2010) Assignment of 1H, 13C and 15N backbone resonances of Escherichia coli LpxC bound to L-161,240. Biomol NMR Assign, 4:37-40.

8. Barb, A.W.,** E.K. Brady, and J.H. Prestegard (2009) Branch-specific sialylation of IgG-Fc glycans by ST6-Gal-I. Biochemistry 48:9705-7.

7. Barb, A.W.,* T.L. Leavy, L.I. Robins, Z. Guan, D.A. Six, P. Zhou, C.R. Bertozzi and C.R.H. Raetz (2009) Uridine-based inhibitors as new leads for antibiotics targeting E. coli LpxC.  Biochemistry, 48:3068-77. 

6. Barb, A. W.,* and P. Zhou (2008) Mechanism and Inhibition of LpxC: the zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotech, 9:9-15. (review) 

5. Barb, A. W.,* L. Jiang, C.R.H. Raetz and P. Zhou (2007) Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA, 104:18433-8.

4. Barb, A. W.,* A.L. McClerren, S. Karnam, C.M. Reynolds, P. Zhou and C.R.H. Raetz (2007) Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 46:3793-3802. 

3. Mdluli, K. E., P.R. Witte, T. Kline, A.W. Barb,* A.L. Erwin, B.E. Mansfield, A.L. McClerren, M.C. Pirrung, L.N. Tumey, P. Warrener, C.R.H. Raetz and C.K. Stover (2006) Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:2178-84. 

2. Barb, A. W.,* D.M. Pharr and J.D. Williamson (2003) A Nicotiana tabacum cell culture selected for accelerated growth on mannose has increased expression of phosphomannose isomerase. Plant Science 165:639-648.

1. Koiwa, H., A.W. Barb, L. Xiong, F. Li, M.G. McCully, B.H. Lee, I. Sokolchik, J. Zhu, Z. Gong, M. Reddy, A. Sharkhuu, Y. Manabe, S. Yokoi, J.K. Zhu, R.A. Bressan and P.M. Hasegawa (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci USA 99:10893-8.