Updated June 17, 2022 Indicates (*) Graduate student, (**) Post-doc, (***) Research Professional, (¶) Undergraduate student 59. Shenoy, A.,* A.R. Davis,*** E.T. Roberts, I.J. Amster, A.W.Barb# (2022) Metabolic 15N labeling of the N-glycosylated Immunoglobulin G1 Fc with an engineered Saccharomyces cerevisiae strain. J Biomol NMR. in press 58. Lampros, E., ¶ P. Kremer,* J. Aguilar Díaz de León,** E.T. Roberts, M.C.R. Benavente,** I.J. Amster, A.W.Barb# (2022) The antibody-binding Fc gamma receptor IIIa / CD16a is N-glycosylated with high occupancy at all five sites. Curr Res Immunol. in press 57. Shenoy, A.,* and A.W. Barb# (2021) Recent advances towards engineering glycoproteins using modified yeast display platforms. Methods in Molecular Biology. 2370:185-205. doi: 10.1007/978-1-0716-1685-7_9 56. Shenoy, A.,* S. Yalamanchili, ¶ A.R. Davis*** and A.W. Barb# (2021) Expression and display of glycoengineered antibodies and antibody fragments with an engineered yeast strain. Antibodies. 10:38. doi: 10.3390/antib10040038. 55. Patel, K.R.,* M.C.R. Benavente,** W.W. Lorenz, E.M. Mace and A.W. Barb# (2021) Fc γ Receptor IIIa / CD16a processing correlates with the expression of glycan-related genes in human natural killer cells. J Biol Chem. 296:100183. doi: 10.1074/jbc.RA120.015516 54. Barb A.W.# (2021) Fc γ receptor compositional heterogeneity: considerations for immunotherapy development. J Biol Chem. 296:100057. Review. doi: 10.1074/jbc.REV120.013168 53. O’Rourke, S.M., G.I. Morozov, J.T. Roberts,* A.W. Barb, and N.G. Sgourakis (2020) Production of soluble pMHC-I molecules in mammalian cells using the molecular chaperone TAPBPR. Protein Engineering, Design, and Selection32:525-532. Doi: 10.1093/protein/gzaa015 52. Patel, K.R.,* J.T. Roberts,* and A.W. Barb# (2020) Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 30:427-432. doi: 10.1093/glycob/cwaa002 51. Roberts J.T.,* K.R. Patel* and A.W. Barb# (2020) Site-specific N-glycan analysis of antibody-binding Fc g receptors from primary human monocytes. Molecular & Cellular Proteomics 19:362-374. doi: 10.1074/mcp.RA119.001733 50. Yamaguchi, Y., and A.W. Barb# (2020) A synopsis of recent developments defining how N-glycosylation impacts immunoglobulin G structure and function. Glycobiology 30:214-225. doi: 10.1093/glycob/cwz068 49. Patel, K.R.,* J.D. Nott, and A.W. Barb# (2019) Primary human natural killer cells retain proinflammatory IgG1 at the cell surface and express CD16a glycoforms with donor-dependent variability. Molecular & Cellular Proteomics 18:2178-2190.doi: 10.1074/mcp.RA119.001607 48. Tolbert, W.D., G.P. Subedi,** N. Gohain, G.K. Lewis, K.R. Patel,* A.W. Barb and M. Pazgier (2019) From Rhesus macaque to human: structural evolutionary pathways for Immunoglobulin G subclasses. MAbs. 2: 1-16. doi: 10.1080/19420862.2019.1589852 47. Patel, K.R.,* J.T. Roberts,* and A.W. Barb# (2019) Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Frontiers Immunology. 10:223. Doi: 10.3389/fimmu.2019.00223 Review 46. Barb, A.W.,# G.P. Subedi,** and D.J. Falconer* (2019). The preparation and solution NMR spectroscopy of human glycoproteins is accessible and rewarding. Methods in Enzymology 614:239-261. doi: 10.1016/bs.mie.2018.08.021 Review 45. Subedi G.P.,** A.V. Sinitskiy, J.T. Roberts,* K.R. Patel,* V.S. Pande and A.W. Barb# (2019). Intradomain interactions in an NMDA receptor fragment mediate N-glycan processing and conformational sampling. Structure 27:55-65.e3 doi: 10.1016/j.str.2018.09.010 44. Roberts J.T.* and A.W. Barb# (2018). A single Fc g receptor IIIb / CD16b amino acid distorts the structure upon binding immunoglobulin G1 and reduces affinity relative to CD16a. J Biol Chem 293:19899-19908 doi: 10.1074/jbc.RA118.005273 43. Subedi G.P**. and A.W. Barb# (2018). CD16a with oligomannose-type N-glycans is the only “low affinity” Fc g receptor that binds the IgG crystallizable fragment with high affinity in vitro. J Biol Chem 293:16842-16850 doi: 10.1074/jbc.RA118.004998 42. Xie, Y., A.W. Barb, T.A. Hennen-Bierwagen and A.M. Myers (2018). Direct determination of the site of addition of glucosyl units to maltooligosaccharide acceptors catalyzed by maize starch synthase I. Frontiers Plant Science 9:1252 doi: 10.3389/fpls.2018.01252 41. Falconer D.J.,* G.P. Subedi,** A.M. Marcella* and A.W. Barb# (2018). Antibody fucosylation lowers FcgRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chemical Biology 17(8):2179-2189. doi: 10.1021/acschembio.8b00342 40. Yang Q., J.W. Martin, A.W. Barb, F. Thelot, A. Yan, B.R. Donald, and T.G. Oas (2018). Continuous interdomain orientation distributions reveal components of binding thermodynamics. J Mol Biol 430:3412-3426. doi: 10.1016/j.jmb.2018.06.022 39. Marcella, A.M.* and A.W. Barb# (2018). Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Applied Microbiology and Biotechnology 102(15):6333-6341. Review. doi: 10.1007/s00253-018-9114-2 38. Falconer, D.J.* and A.W. Barb# (2018). Mouse IgG2c Fc loop residues promote greater receptor-binding affinity than mouse IgG2b or human IgG1. PLoSOne 13(2): p. e0192123. doi:10.1371/journal.pone.0192123 37. Patel, K.R.,* J.T. Roberts,* G.P. Subedi** and A.W. Barb# (2018). Restricted processing of CD16a / Fc g receptor IIIa N-glycans from primary human NK cells impacts structure and function. J Biol Chem 293(10):3477-3489. Doi: 10.1074/jbc.RA117.001207 Editors Choice, see Oliva, Cavanaugh & Cobb (2018). J Biol Chem, 293:3490 for a summary of this article’s impact 36. Marcella, A.M.,* S.J. Culbertson, M.A. Shogren-Knaak and A.W. Barb# (2017). Structure, high affinity and negative cooperativity of the Escherichia coli holo-(acyl carrier protein):holo-(acyl carrier protein) synthase complex. J Mol Biol429(23):3763-3775. 35. Marcella, A.M.* and A.W. Barb# (2017). The R117A variant of the Escherichia coli transacylase FabD synthesizes novel acyl-(acyl carrier proteins). Applied Microbiology and Biotechnology 101(23-24):8431-8441. 34. Subedi,G.P.,** D.F. Falconer* and A.W. Barb# (2017) Carbohydrate-polypeptide contacts in the antibody receptor CD16A identified through solution NMR spectroscopy. Biochemistry 56(25):3174-3177. 33. Barb, A.W. #(2017). Quantifying carbohydrate motions through solution measurements: applications to immunoglobulin G Fc. In NMR in Glycoscience and Glycotechnology, K.Kato and T. Peters, ed, Royal Society of Chemistry, p208-227. Review (prior to current rank) 32. Larson, M.E., ¶ D.J. Falconer,* A.M. Myers, and A.W. Barb# (2016). Direct characterization of the maize starch synthase IIa product shows maltodextrin elongation occurs at the non-reducing end. J Biol Chem 291(48):24951-24960. 31. Marcella, A.M.* and A.W. Barb# (2016). A rapid fluorometric assay for the S-malonyltransacylase FabD and other sulfhydryl utilizing enzymes. J Biol Methods 2016;3(4):e53. doi: 10.14440/jbm.2016.144 30. Subedi, G.P.,** and A.W. Barb# (2016). The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc g receptor. MAbs 8:1512-1524. 29. Barb, A.W.# and G.P. Subedi** (2016). An encodable lanthanide binding tag with reduced size and flexibility for measuring residual dipolar couplings and pseudocontact shifts in large proteins. J Biomol NMR 64:75-85. 28. Subedi, G.P.,** H.A. Moniz, R.W. Johnson, K.W. Moremen, A.W. Barb# (2015). High yield expression of recombinant human proteins with the transient transfection of HEK293 cells in suspension. J. Vis. Exp.(106), e53568, doi:10.3791/53568. 27. Subedi, G.P.,** and A.W. Barb# (2015). The structural role of antibody N-glycosylation in receptor interactions Structure, 23:1573-1583. 26. Marcella, A.M.,* J. Fuyuan and A.W. Barb# (2015). Preparation of holo- and malonyl-[acyl-carrier-protein] in a manner suitable for analog development. Protein Expression and Purification, 115:39-45. 25. Hanson, Q.M.* and A.W. Barb# (2015). A perspective on the structure and receptor-binding properties of immunoglobulin G Fc. Biochemistry 54:2931-42. Review 24. Barb, A.W.# (2015) Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [13C,15N]-N-acetylglucosamine labeling of immunoglobulin G1. Biochemistry 54:313-322 23. Subedi, G.P.,** Q.M. Hanson* and A.W. Barb# (2014) Restricted Motion of the Conserved Immunoglobulin G1 N-Glycan Is Essential for Efficient FcγRIIIa Binding. Structure 22:1478-88. 22. Frank, M., R.C. Walker, W.N. Lanzilotta, J.P. Prestegard and A.W. Barb# (2014) Immunoglobulin G1 Fc domain motions: implications for Fc engineering. J Mol Biol 426:1799-1811. (preceding independence) 21. Barb, A.W.,** S.K. Hekmatyar, J.N. Glushka, and J.H. Prestegard(2013) Probing alanine transaminase catalysis with hyperpolarized 13CD3-pyruvate. J Mag Res, 228:59-65. 20. Barb, A.W.,** X. Wang, and J.H. Prestegard (2013) Refolded Recombinant Siglec5 for NMR Investigation of Complex Carbohydrate Binding. Protein Expr Purif 88(2):183-9. 19. Barb, A.W.,** M. Lu, K. Moremen, and J.H. Prestegard (2012) NMR characterization of Immunoglobulin G Fc glycan motion on enzymatic sialylation. Biochemistry, 51:4618-4626 18. Barb, A.W.,** T.-H. Ho, ¶ and J.H. Prestegard (2012) Lanthanide binding and IgG affinity construct for solution NMR, MRI and luminescence microscopy. Protein Science, 21:1456-1466. 17. Barb, A.W.,** D.I. Freedberg, M.D. Battistel, and J.H. Prestegard (2011) NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides. J Biomol NMR, 51:163-171. 16. Barb, A.W.,** S.K. Hekmatyar, J.N. Glushka, and J.H. Prestegard (2011) Exchange facilitated indirect detection of hyperpolarized 15ND2-amido-glutamine. J Mag Res, 212:304-310. 15. Barb, A.W.,** and J.H. Prestegard (2011) NMR analysis demonstrates the immunoglobulin G N-glycans are accessible and dynamic. Nature Chem Biol, 7:147-153. see Meier & Duus (2011) Nature Chem Biol, 7:131 for a summary of this article and its impact 14. Barb, A.W.,** J. Cort, J. Seetharaman, S. Lew, H.-W. Lee, T. Acton, R. Xiao, M.A. Kennedy, L. Tong, G.T. Montelione and J.H. Prestegard (2011) Structures of Domains I and IV from YbbR are representative of a widely distributed protein family. Protein Science, 20:396-405. 13. Barb, A.W.,** J.N. Glushka and J.H. Prestegard (2011) Kinetics of neuraminidase action on glycoproteins by 1D and 2D NMR. J Chem Ed, 88:95-97. 12. Lee, C.J., X. Liang, X. Chen, D. Zeng, S.H. Joo, H.S. Chung, A.W. Barb,* S.M. Swanson, R.A. Nicholas, Y. Li, E.J. Toone, C.R.H. Raetz and P. Zhou (2011) Species-Specific and Inhibitor-Dependent Conformations of LpxC–Implications for Antibiotic Design. Chem & Biol, 18:38-47. 11. Barb, A.W.,** A.J. Borgert, M. Liu, G. Barany and D. Live (2010) Intramolecular glycan-protein interactions in glycoproteins. Meth Enz 478:365-388. 10. Lee, H.W., G. Wylie, S. Bansal, X. Wang, A.W. Barb, ** M. Macnaughtan, A. Ertekin, G.T. Montelione and J.H. Prestegard (2010) Three-dimensional structure of the weakly associated protein homodimer SeR13 using RDCs and paramagnetic surface mapping. Protein Science, 19:1673-1685. 9. Barb, A.W.,* L. Jiang, C.R.H. Raetz and P. Zhou (2010) Assignment of 1H, 13C and 15N backbone resonances of Escherichia coli LpxC bound to L-161,240. Biomol NMR Assign, 4:37-40. 8. Barb, A.W.,** E.K. Brady, ¶ and J.H. Prestegard (2009) Branch-specific sialylation of IgG-Fc glycans by ST6-Gal-I. Biochemistry 48:9705-7. 7. Barb, A.W.,* T.L. Leavy, L.I. Robins, Z. Guan, D.A. Six, P. Zhou, C.R. Bertozzi and C.R.H. Raetz (2009) Uridine-based inhibitors as new leads for antibiotics targeting E. coli LpxC. Biochemistry, 48:3068-77. 6. Barb, A. W.,* and P. Zhou (2008) Mechanism and Inhibition of LpxC: the zinc-dependent deacetylase of bacterial lipid A synthesis. Curr Pharm Biotech, 9:9-15. (review) 5. Barb, A. W.,* L. Jiang, C.R.H. Raetz and P. Zhou (2007) Structure of the deacetylase LpxC bound to the antibiotic CHIR-090: time-dependent inhibition and specificity in ligand binding. Proc Natl Acad Sci USA, 104:18433-8. 4. Barb, A. W.,* A.L. McClerren, S. Karnam, C.M. Reynolds, P. Zhou and C.R.H. Raetz (2007) Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 46:3793-3802. 3. Mdluli, K. E., P.R. Witte, T. Kline, A.W. Barb,* A.L. Erwin, B.E. Mansfield, A.L. McClerren, M.C. Pirrung, L.N. Tumey, P. Warrener, C.R.H. Raetz and C.K. Stover (2006) Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob Agents Chemother 50:2178-84. 2. Barb, A. W.,* D.M. Pharr and J.D. Williamson (2003) A Nicotiana tabacum cell culture selected for accelerated growth on mannose has increased expression of phosphomannose isomerase. Plant Science 165:639-648. 1. Koiwa, H., A.W. Barb, ¶ L. Xiong, F. Li, M.G. McCully, B.H. Lee, I. Sokolchik, J. Zhu, Z. Gong, M. Reddy, A. Sharkhuu, Y. Manabe, S. Yokoi, J.K. Zhu, R.A. Bressan and P.M. Hasegawa (2002) C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proc Natl Acad Sci USA 99:10893-8.